
Noname manuscript No.
(will be inserted by the editor)

Using Game Description Language for Mediated Dispute
Resolution

Dave de Jonge · Tomas Trescak · Carles Sierra · Simeon Simoff ·
Ramon López de Mántaras

the date of receipt and acceptance should be inserted later

Abstract Mediation is a process in which two parties

agree to resolve their dispute by negotiating over alter-

native solutions presented by a mediator. In order to

construct such solutions, the mediator brings more in-

formation and knowledge, and, if possible, resources to

the negotiation table. In order to do so, the mediator

faces the challenge of determining which information is

relevant to the current problem, given a vast database

of knowledge. The contribution of this paper is the au-

tomated mediation machinery to resolve this issue. We

define the concept of a Mediation Problem and show

how it can be described in Game Description Language

(GDL). Furthermore, we present an algorithm that al-

lows the mediator to efficiently determine which infor-

mation is relevant to the problem and collect this in-

formation from the negotiating agents. We show with

several experiments that this algorithm is much more

efficient than the naive solution that simply takes all

available knowledge into account.

D. de Jonge
School of Computing, Engineering and Mathematics,
Western Sydney University, Australia
E-mail: d.dejonge@westernsydney.edu.au,

T. Trescak
School of Computing, Engineering and Mathematics,
Western Sydney University, Australia
E-mail: t.trescak@westernsydney.edu.au,

C. Sierra
IIIA-CSIC, Barcelona, Spain
E-mail: sierra@iiia.csic.es,

S. Simoff
School of Computing, Engineering and Mathematics,
Western Sydney University, Australia
E-mail: s.simoff@westernsydney.edu.au

R. López de Mántaras
IIIA-CSIC, Barcelona, Spain
E-mail: mantaras@iiia.csic.es

1 Introduction and Motivation

Dispute resolution is a complex process that depends

on the will of involved parties to reach consensus. Any

involved agent would only accept a solution if that so-

lution allows it to partially or completely fulfill its own

individual goals with the available resources. In many

cases, such negotiation depends on searching for al-

ternative solutions which requires extensive knowledge

about the disputed matter. If such information is not

available to the negotiating parties then negotiation

fails. In such cases a mediator can assist both parties

to come to an agreement.

This paper presents a logic-based mediation system

inspired by previous work in the fields of mediation

and argumentation-based negotiation. It builds on some
ideas presented in (Parsons et al, 1998). In that work

agents had all the knowledge and resources needed to

resolve their dispute—a relatively strong assumption in

the context of real-world negotiations. In the real world,

lacking knowledge or resources may lead to unsuccess-

ful negotiations. In many cases, such knowledge or even

alternative resources may be available, but agents are

not aware of them.

This paper proposes a mediator that possesses ex-

tensive knowledge. The mediator also has access to var-

ious resources that may help to resolve the dispute. Us-

ing this knowledge and resources, as well as knowledge

and resources obtained from the negotiating agents, the

mediator creates alternative solutions, which become

subject to further negotiation. We assume this mediator

is neutral and considered trustworthy by all interested

parties.

Although the problem we aim to tackle is inspired

by (Parsons et al, 1998) we are taking an entirely differ-

ent approach for the implementation of the mediation



2 Dave de Jonge et al.

algorithm. Key to our approach is the observation that

for any mediation scenario the underlying problem that

one aims to solve is essentially a game, since there are

several parties with conflicting goals. This means that

Mediation Problems can be described using Game De-

scription Language (GDL) (Love et al, 2006).

Most works in the field of Automated Mediation

represent the domain of interest either in some ad-hoc

format, such as a feature-vector representation, or us-

ing an ontological language. Ontological languages are

very useful to describe facts about a static world, but

are less suitable to describe more complex planning do-

mains in which one needs to specify the pre-conditions

and post-conditions of the agents’ actions. We argue

that for such domains GDL is more natural choice. GDL

allows us to describe domains in which agents’ utilities

depend on sequences of actions which are subject to

complex constraints, and in which different agents have

different goals. Furthermore, it is an established lan-

guage already used by many researchers in the field of

General Game Playing and an extensive code base that

facilitates rapid development of algorithms is publicly

available.

From a more formal point of view, GDL has te ad-

vantage that its restricted rule-based syntax in combi-

nation with ‘minimal model semantics’ and ‘negation-

by-failure’ makes it easy to determine relationships be-

tween the formulas in the agents’ knowledge bases. This

is essential in order to determine which knowledge is

relevant to the problem and which knowledge is not.

Furthermore, a set of GDL rules is always consistent,

and determining whether a formula is true or not, given

a set of rules, is decidable.

General Game Playing (GGP) deals with the prob-

lem of implementing agents that can play any kind of

game, of which the rules are only known at run-time.

A General Game Playing agent is able to interpret the

rules of a game at run-time and devise a strategy for

it without any human intervention. One important dif-

ference between GGP and our Mediation Problems is

that in GGP it is assumed that the rules of the game

are known to all players. In our case, however, we as-

sume that each agent only has partial knowledge of the

game’s rules, so the agents need to exchange knowledge.

Since this knowledge may be of strategic importance,

the players may not be willing to share all knowledge

with each other, and therefore require a neutral medi-

ator to find a solution for them.

We note that the mediator faces two major chal-

lenges:

1. The mediator needs to determine which information

to request from the players in order to fill the gaps

in its knowledge.

2. Given this information, the mediator needs to search

for a suitable action plan that is acceptable to both

players.

Naively, one could argue that the mediator can get rid

of the first challenge by simply requesting the players to

provide all knowledge they have about the given prob-

lem. The problem with this approach, however, is that

in many real-world situations agents may possess very

large databases of knowledge that allow them to deal

with many different problems, and therefore the major-

ity of the information in such databases is irrelevant to

the problem they are currently trying to solve.

Instead, the mediator needs to apply intelligent rea-

soning to carefully select which information should be

requested from the negotiating agents, and which infor-

mation should be ignored. After all, taking into account

irrelevant information would unnecessarily increase the

size of the mediator’s search space. Moreover, agents

may prefer not to give away too much information for

privacy reasons, and instead prefer to only reveal those

pieces of knowledge that are essential to solving the

problem.

In this paper, we only focus on the first of these two

challenges. Our proposed mediation algorithm system-

atically works backwards from the agents’ final goals,

and in this way determines step by step which knowl-

edge is required to obtain those goals. For the second

challenge one can apply existing techniques from Plan-

ning, GGP, CBR, or Automated Mediation, so we will

largely ignore this.

We should note that in this paper, although we

are dealing with imperfect information, we describe our

problems in pure GDL, rather than its extension GDL-

II, even though GDL-II was specifically designed for

games with imperfect information (Thielscher, 2010).

The reason for this is that in our case the imperfect

information is of an inherently different nature. GDL-

II is used to define games in which the players do not

have perfect information about the state of the game

(e.g. they cannot see each others’ playing cards), while

the rules of the game are perfectly known to all play-

ers. In this paper, on the other hand, the game itself is

a game of perfect information, but the players do not

have complete information about the rules of the game.

Therefore, we can restrict ourselves to GDL.

The rest of this paper is organized as follows. In

the next section, we summarize existing work related

to Automated Mediation, Argumentation-Based Nego-

tiation and Game Description Language. In Section 3

we introduce the Home Improvement problem, which

is a toy-world problem that introduces the main ideas

behind mediation. In Section 4 we formally define the

concept of a Mediation Game, which is a type of game



Using Game Description Language for Mediated Dispute Resolution 3

involving two competing agents and a neutral media-

tor. In Section 5 we give a short introduction to GDL.

Then, in Section 6 we are finally ready to formalize

the problem we aim to solve (a Mediation Problem).

In Section 7 we give a full description of the Home Im-

provement example in GDL. In Section 8 we present

our mediation algorithm and in Section 9 we present

the results of our experiments. In Section 10 we sum-

marize our conclusions and finally, in Section 11, we

discuss future work.

2 Previous Work

Many approaches to mediation focus mainly on how to

find solutions, given the domain knowledge, but pay

less attention to the question of how the knowledge

about the current problem is acquired. They assume

a closed world in which every participant has all infor-

mation about the problem to solve, and only about that

specific problem. In such cases, providing the mediator

with the relevant information to solve the problem is

trivial. They often do not take into account that agents

in reality may have large knowledge bases containing

many pieces of information that are actually irrelevant

to the current problem, and that an agent alone may

not be able to determine whether a specific piece of

information is relevant to the problem or not.

Some Case-Based Reasoning (CBR) approaches do

assume the mediator has access to a large database of

knowledge, but this is used only to retrieve solutions

to similar problems (Baydin et al, 2011). In our case,

on the other hand, the knowledge bases contain the in-

formation that defines a planning problem, rather than

the solutions to such problems. These CBR approaches

can still be used perfectly in combination with our ap-

proach, but we focus on a different aspect of mediation

(gathering relevant information, rather than finding so-

lutions).

The MEDIATOR (Kolodner and Simpson, 1989) fo-

cused on case-based reasoning as a single-step for find-

ing a solution to a dispute resolution problem. The me-

diation process was reduced to a one-step case-based

inference, aimed at selecting an abstract “mediation

plan”. The work did not consider the value of the ac-

tual dialog with the mediated parties. The PERSUADER

(Sycara, 1991) deployed mechanisms for problem re-

structuring that operated over the goals and the re-

lationships between the goals within the game theory

paradigm, applied to labor management disputes. To

some extent this work is a precursor of another game-

theoretic approach to mediation, presented in (Wilken-

feld et al, 2004) and the interest-based negotiation ap-

proach in (Rahwan et al, 2009). Notable are recent

game-theoretic computational mediators AutoMed (Cha-

lamish and Kraus, 2012) and AniMed (Lin et al, 2011)

for multi-issue bilateral negotiation under time con-

straints. They operate within known solution space, of-

fering either specific complete solutions (AutoMed) or

incremental partial solutions (AniMed). In these cases

the domains were described by sets of feature-vectors,

and the agents’ preferences over these vectors. Each ne-

gotiating agent had perfect knowledge about the do-

main (except its opponent’s utility function). The only

information exchanged between the negotiators and the

mediator, was partial information about the negotia-

tors’ preference relations. The ‘Curious Negotiator’

(Simoff and Debenham, 2002) was proposed as a gen-

eral infrastructure for mediation in which knowledge

gathering plays an essential. However, it did not spec-

ify any detailed algorithms or mention any language

to define the mediation problems. The Family Winner

(Bellucci and Zeleznikow, 2005) manipulative mediator

aimed at modifying the initial preferences of the parties

in order to converge to a feasible and mutually accept-

able solution. In this work human users introduced their

knowledge about the domain through a user interface,

so the mediator itself did not have to worry about filter-

ing out any irrelevant information, as this was already

done by the humans.

In real settings it is not sufficient to only have in-

formation about negotiation issues to derive the out-

come preferences (Visser et al, 2011). An exploratory

study (Schei and Rognes, 2003) of a multiple (three)

issue negotiation setting suggests the need for devel-

oping integrative (rather than position-based) negoti-

ation processes which take into account information
about the motivational orientation of negotiating par-

ties. Incorporation of information beyond negotiation

issues has been the focus of a series of works related

to information-based agency (Debenham, 2004; Deben-

ham and Simoff, 2006; Sierra and Debenham, 2007).

Value-based argumentation frameworks (Bench-Capon,

2003), interest-based negotiation (Rahwan et al, 2009)

and interest-based reasoning (Visser et al, 2011) con-

siders the treatment of any kind of motivational infor-

mation that leads to a preference in negotiation and

decision making.

The field of General Game Playing is a relatively

new field. Although it already existed earlier, it only

started to draw widespread attention with the develop-

ment of GDL and the first edition of the annual GGP

competition, at the AAAI Conference in 2005 (Gene-

sereth et al, 2005). Common search techniques that are

applied by many players are minimax (von Neumann,

1959) search, alpha-beta pruning (Knuth and Moore,

1975) and Monte Carlo Tree Search (MCTS) (Koc-



4 Dave de Jonge et al.

sis and Szepesvári, 2006; Genesereth and Thielscher,

2014). Although GDL was mainly intended to be used

for GGP, it has also been used to represent knowledge

in other fields, such as Automated Negotiations (Jonge

and Zhang, 2016).

3 The Home Improvement Problem

In this section we give an informal description of the

problem that we will use as a running example througout

this paper. It is an adaptation of the home improvement

problem from (Parsons et al, 1998).

In this example, agent α is trying to hang a picture

on the wall. Agent α knows that to hang a picture it

needs a nail and a hammer. Agent α only has a screw

and a hammer, but it knows that agent β owns a nail.

Agent β is trying to hang a mirror on the wall. β knows

that it needs a nail and a hammer to hang the mirror,

but β currently possesses only a nail and a screw, and

also knows that α has a hammer. Luckily, there is also

a mediator µ which owns a screwdriver and knows that

a mirror can be hung using a screw and a screwdriver.

This mediator does not have any goals of its own, other

than that it desires α and β to both achieve their re-

spective goals.

Since agents α and β have individual interests we

assume they are not willing to share their information

directly with each other. We do, however, assume that

they both trust the mediator and are therefore willing

to share information with the mediator.

The difference with the example in (Parsons et al,

1998) is that here the mediator owns some of the knowl-

edge and resources needed to resolve the dispute and

not just the agents. This reflects reality, when clients

seek advice of an expert to resolve their problem.

The task of the mediator can be split up into two

subtasks. Firstly, the mediator needs to gather all the

relevant information necessary to find a solution. Sec-

ondly, once the mediator has all that information, he

needs to use it to find the solution. In this paper we

focus on the first subtask, as the second subtask can be

considered a standard planning problem. The difficulty

in the first task lies in the fact that the mediator and the

agents do not only have information about the current

problem they are aiming to solve, but also about many

other topics, most of which are unrelated to the Home

Improvement problem. Furthermore, for any given piece

of information it may not be obvious to the agent own-

ing that information whether it is relevant to the prob-

lem or not, because it depends on certain knowledge

owned by another agent. Therefore, the mediator needs

an intelligent algorithm to identify the relevant pieces

of information and collect them from the other agents.

4 Mediation Games

In the previous section we have informally described an

example of a Mediation Problem. Before we can give a

formal definition of a Mediation Problem we first define

what we call a Mediation Game, which is very similar to

the traditional notion of a game, except that it involves

a neutral mediator. Then, we will use this in Section

6 to define a Mediation Problem as a Mediation Game

for which each agent only knows part of the rules.

It is important to understand that the concepts of

a Mediation Game and a Mediation Problem are only

used to describe the problem that the agents aim to

solve. They do not describe the actual process of medi-

ation.

A Mediation Game consists of two players and a

mediator. The players and the mediator each have a

set of actions to their disposal which they can execute

to change the state of the world. While the two players

each aim to maximize their individual utility values,

the mediator is neutral and only aims to find Pareto-

optimal solutions.

Definition 1 (Mediation Game) A Mediation Game

consists of:

– A set of agents: Ag = {α, β, µ}, where α and β are

also called players and µ is called the mediator.

– Three non-empty sets of actions: Aα,Aβ ,Aµ (one

for each agent) which are mutually disjoint.

– A finite, non-empty set of states W .

– An initial state w1 ∈W .

– A non-empty set of terminal states T ⊂W .

– For each player i ∈ {α, β} a utility function: Ui :

T → [0, 100] that maps each terminal state to a

utility value between 0 and 100.

– For each agent a legality function: Li : (W \T )→
2Ai (with i ∈ {α, β, µ}) that defines for each non-

terminal state which actions are legal for that agent.

– An update function u : (W \T )×Aα×Aβ×Aµ →
W that maps each non-terminal state and action

profile to a new state.

The definition of a Mediation Game is very similar to

a standard game-theoretical definition of an extensive

form game for 3 players. The main difference is that

in our case the mediator does not have its own utility

function.

It seems worthy to remark here that according to

this definition utility is only defined on the terminal

states. This means that the agents only care about

which terminal state is achieved, but do not care about

how it is achieved. This assumption may be different

from the assumptions made in some planning domains,



Using Game Description Language for Mediated Dispute Resolution 5

but it is standard practice in GGP.1 Also note that

utility is defined to be a value between 0 and 100. This

is because GDL does not define fractional numbers, so

utility must be an integer.

Definition 2 (Binary Mediation Game) We say a

Mediation Game is binary or that a Mediation Game

has binary utility functions, if for each terminal state

t ∈ T and each player i ∈ {α, β} we have either Ui(t) =

0 or Ui(t) = 100

Informally, a mediation game being binary means that

for each player the outcome is either success or failure,

but there is nothing in between.

Definition 3 (Action Profile) An action profile a is

a triple consisting of one action for each agent.

a = (aα, aβ , aµ) ∈ Aα ×Aβ ×Aµ

An action profile a is legal in state w iff:

a ∈ Lα(w)× Lβ(w)× Lµ(w)

Definition 4 (History) A history H is a sequence:

(w1,a1, w2,a2 . . . wn)

where each at is an action profile and each wt is a state,

such that for each t ≥ 1 we have that at is legal in wt
and we have:

wt+1 = u(wt,at).

A terminal history is a history for which the last state

wn is a terminal state.

That is: each state wt+1 in the sequence is the result

from the agents playing the action profile at in the pre-

vious state wt, and each action profile at consists only

of actions that are legal for the respective agents in the

state wt.

Definition 5 (Plan) A plan is a finite sequence of ac-

tion profiles:

(a1,a2, . . .an)

Given an initial state w1 a plan is a legal plan if there

exists a sequence of states (w1, w2, . . . wn) such that the

sequence (w1,a1, w2,a2 . . . wn) is a history. Note that if

such a sequence of states exists it is unique. A legal

plan is a terminal plan if the corresponding history

is a terminal history. A legal plan is cycle-free if the

sequence of states does not contain any state more than

once; i.e.: for all j, k ∈ [1, . . . n] if j 6= k then wj 6= wk.

1 Technically speaking, GDL does allow you to define utility
over non-terminal states, but these utility values do not really
have any meaning, as in the end the utility of the terminal
state is the only thing that ‘counts’.

Lemma 1 For any Mediation Game G the set of cycle-

free plans is finite.

Proof This follows directly from the restriction that the

set of world states W of G must be finite.

We note that each player has its own individual util-

ity function, and that both players are considered self-

ish: each player is only interested in realizing a terminal

state that maximizes its own utility function. Neither

of the two players is interested in the value of other

player’s utility, and therefore the players’ intentions

may be conflicting. We do assume, however, that the

mediator is willing to help executing a plan that is ac-

ceptable to both players.

The presence of a mediator has two advantages:

firstly, the mediator may have knowledge the agents do

not have. Secondly, the agents may share their knowl-

edge with the mediator. This allows the agents to find

plans using their combined knowledge, without having

to reveal their knowledge to one another. The mediator

is assumed to be a trusted party to which the agents

can reveal information in confidence. The goal of the

mediator is to propose a legal and terminal plan such

that each player is willing to execute its part of that

plan.

For a given mediation game G we can formalize the

agents’ objectives by defining a preference relation �i
for each agent i ∈ {α, β, µ} over the set of terminal

plans. Let p and q be two terminal plans and wp and

wq the terminal states of their respective corresponding

histories. Then the agents have the following preference

relations:

p �α q ⇔ Uα(wp) ≥ Uα(wq)

p �β q ⇔ Uβ(wp) ≥ Uβ(wq)

p �µ q ⇔ Uα(wp) ≥ Uα(wq) ∧ Uβ(wp) ≥ Uβ(wq)

Of course, one could define a utility function for the

mediator simply as the sum of the two utility functions

of the players. However, we are intentionally not do-

ing that. The first reason for this is that in real-world

scenarios you may not always have exact utility func-

tions. Often it is more reasonable to just assume that

an agent has a preference order over the possible out-

comes, without being able to assign exact quantitative

values to them. Therefore, whenever we have a state wa
with utility 100 and a state wb with utility 50 we should

interpret this merely as “wa is better than wb” rather

than as the stronger statement “wa is twice as good

as wb”. This means that it does not really make sense

to take the sum of the utility values of two different

players, since their precise values do not have any real

meaning. The second reason is that, even if the utility

functions are exact, a player may lie to the mediator



6 Dave de Jonge et al.

about its true utility in order to enforce a better out-

come for himself (a very common strategy in real-life

negotiations). Again, this means that it does not really

make sense for the mediator to evaluate the sum of the

players’ utility functions.

Definition 6 (Solution) A solution to a Mediation

Game is a terminal, cycle-free plan such that its re-

sulting terminal state t yields positive utility for both

players: Uα(t) > 0 and Uβ(t) > 0

A Mediation Game does not necessarily have a solution,

but it only makes sense to apply mediation to Mediation

Games that do have at least one solution.

The restriction that a solution be cycle-free is not

strictly necessary. However, it does not make much sense

to propose any solutions that do contain cycles, since

any cycle could trivially be removed from the solution.

On the other hand, the restriction of being cycle-free

has the advantage that it ensures that the set of solu-

tions is finite.

5 Game Description Language

In this section we give a short introduction to GDL. For

more details we refer to (Love et al, 2006).

GDL is a logical language designed to describe game

rules. Specifically, it was invented for the research area

of General Game Playing. Although our Mediation Prob-

lems may just as well be specified in any other language

we feel that GDL is a natural choice, because a Media-

tion Problem is a planning problem in which the agents

have conflicting goals, and therefore it is essentially a

game. Moreover, a big advantage of GDL is that it is

designed specifically to be used in actual implementa-

tions (rather than mere theoretical descriptions) and

an extensive Java framework is readily available that

allows us to quickly implement working algorithms.

5.1 Syntax

Predicates in GDL are composed of relation symbols,

constants, variables, function symbols and the logical

connectives ∧, ¬ and →. GDL is similar to Datalog

(Ceri et al, 1989), but it gives special meaning to the

following relation symbols:2 init, true, next, legal, goal,

terminal, does and distinct, which are related to games.

Definition 7 (Rule) A GDL rule is an expression of

the following form:

s1 ∧ s2 ∧ . . . sn → h

2 GDL defines more relations symbols, but we will not dis-
cuss them here because they are not relevant for this paper.

where each si is a positive or negative literal, and h is

a positive literal. The atom h is called the head of the

rule and the si’s are called the subgoals of the rule.

The conjunction of subgoals is called the body of the

rule. The body of a rule may be an empty conjunction,

in which case the rule is also referred to as a fact, and

is denoted as: → h.

In GDL the relation symbols true, does, and distinct are

not allowed to appear in the head of any rule, while the

other keywords goal, terminal, legal, next, and init are

not allowed to appear in the body of a rule. Apart from

these eight keywords, GDL literals may also contain

user-defined relation symbols. An expression is said to

be ground if it does not contain any variables.

Ground atoms with the relation symbol true are

called base propositions. In this paper, if a =

(aα, aβ , aµ) is an action profile of some (mediation)

game G, then we use the notation Da to denote the

following set of propositions:

Da = {does(α, aα), does(β, aβ), does(µ, aµ)}.

We now define the notion of a proposition s being

derivable. Informally, if s is derivable from (R,B,a) it

means that, if all propositions in B and Da are con-

sidered ‘true’ then, according to the rules in R, the

proposition s must also be considered ‘true’.

Definition 8 (Derivable) Let R be a set of rules, B
a set of base propositions, and a an action profile. Then

we say that a ground atom s is derivable from (R,B,a)

iff either s ∈ B ∪Da, or all of the following are true:

– There is a rule φ ∈ R and a substitution θ such that

φ[θ] is ground, and

– s is the head of φ[θ], and

– all positive subgoals of φ[θ] are derivable from

(R,B,a), and

– none of the negative subgoals of φ[θ] is derivable

from (R,B,a).

We see that the notion of being derivable is de-

fined recursively. This recursion may terminate either

because the rule φ is a fact (i.e. has an empty body), or

because its subgoals contain the relation symbol does

or true. This recursion is not always guaranteed to ter-

minate. If the recursion does not terminate because it

involves a cycle of positive literals, then all literals in

this cycle are considered non-derivable. Note that it is

not possible that such a cycle contains any negative

literals, because a valid GDL description must satisfy

a property called stratification. For more information

about this we refer to (Love et al, 2006), because we do

not want to get into the technical details of GDL here.



Using Game Description Language for Mediated Dispute Resolution 7

5.2 Semantics (informal)

We here give an informal description of the semantics of

GDL. A formal description is given in the next subsec-

tion. We should note that these semantics are defined

for games rather than Mediation Games. However, as

we noted before a Mediation Game is just a game for

three players, except that the mediator does not have a

utility function. Therefore, we only need to add the syn-

tactical restriction that the first argument of the goal

relation cannot be the mediator. With this restriction

the semantics of GDL for games directly carries over to

Mediation Games.

In order to link a game to a set of GDL rules we

need a valuation function V , which maps every state

w of G injectively to a set of base propositions. That

is, each state is uniquely identified with a finite set of

atoms of the form true(p), where p can be any ground

term. For example, in Tic-Tac-Toe the state in which

the the center cell contains the marker X and the left

upper cell contains the marker O could be represented

as:

V (w) = { true(cell(2, 2, X)) , true(cell(1, 1, O)) }

A game can then be defined completely as a set of GDL

rules. For example, if the game description contains the

following rule:

true(p) ∧ does(α, a)→ next(q)

it means that if the game is in a state w for which

true(p) ∈ V (w) and player α plays action a then in the

next round the game will be in a state w′ for which
true(q) ∈ V (w′) holds.

In Tic-Tac-Toe, for example, one could have the

rule:

does(α,mark(2, 2))→ next(cell(2, 2, X))

meaning “If α plays the action mark(2, 2) then in the

next turn the cell with coordinates (2,2) will contain an

X”. Similarly:

true(p)→ terminal

means that any state w for which true(p) ∈ V (w) holds

is a terminal state.

The terms in these rules may contain variables, which

we denote with a question mark. For example, the rule

does(α,mark(?m, ?n))→ next(cell(?m, ?n,X)

means that for any pair of coordinates (m,n) it is true

that if player α plays the action mark(m,n) then in

the next state the cell with those coordinates will be

marked with an X. The fact

→ init(p)

means that for the initial state w1 we have that true(p) ∈
V (w1) holds.

true(p)→ legal(α, a)

means that for any state in which true(p) ∈ V (w) holds

it is legal for player α to play the move a.

true(p)→ goal(α, 100)

means that in any state w for which true(p) ∈ V (w)

holds α receives a utility value of 100.

5.3 Semantics (formal)

We will now present the semantics of GDL in a more

formal way.

Definition 9 (Valuation Function) Given a gameG

and a set of Base propositions B, a valuation function

is an injective map that maps each world state w of G

to a finite set of base propositions V (w) ⊂ B.

V : W → 2B

Given a game G, a valuation function V for that

game, a state w and an action profile a = (aα, aβ , aµ)

the entailment of a ground atom for which its relation

symbol is a GDL keyword is defined as follows:

– G,V �(w,a) true(p) iff true(p) ∈ V (w)

– G,V �(w,a) does(i, b) iff ai = b

with i ∈ {α, β, µ}
– G,V �(w,a) distinct(p, q) iff p 6= q

– G,V �(w,a) init(p) iff true(p) ∈ V (w1)

– G,V �(w,a) next(p) iff true(p) ∈ V (u(w,a))

– G,V �(w,a) legal(i, b) iff b ∈ Li(w)

with i ∈ {α, β, µ}
– G,V �(w,a) terminal iff w ∈ T
– G,V �(w,a) goal(i, n) iff Ui(w) = n

with i ∈ {α, β}
Here, all terms are ground. The equality ai = b means

that the two terms are syntactically equal, and p 6= q

means that p and q are syntactically different. Note

that the entailment of true(p), legal(i, b), terminal,

and goal(i, n) does not depend on the action profile,

so in those cases we may write G,V �w instead of

G,V �(w,a). In the case of distinct and init their en-

tailment does not even depend on the state, so we may

even write G,V �.

Logical connectives are defined as usual:

– G,V �(w,a) ¬s iff G,V 6�(w,a) s

– G,V �(w,a) s1 ∧ s2 iff

G,V �(w,a) s1 and G,V �(w,a) s2



8 Dave de Jonge et al.

5.4 Negation-by-Failure

The fact that the head of a GDL rule must always be a

positive atom, is because negation is to be interpreted

as negation-by-failure. This means that an atom s is

considered true only if it is derivable, and is considered

false if it is not derivable. Equivalently, a literal ¬s is

considered true if and only if s is not derivable. As a

consequence, we can never have that s and ¬s are true

at the same time, so a set of GDL rules can never be

inconsistent.

5.5 Irrelevant Rules

In the rest of this paper we assume that agents may

have knowledge bases that contain much more infor-

mation than just information about the current game

they are playing. In order to formalize this we intro-

duce the notion of a GDL rule being irrelevant. This

concept does not appear in the existing literature, be-

cause normally in GGP one is not interested in such

rules.

Informally, a rule φ is irrelevant in R, if it does

not affect (either directly or indirectly) the goals or the

termination conditions of the game that R is supposed

to describe. This means that φ may just as well be

removed from R, because R \ {φ} still forms a proper

description of that game.

Definition 10 (Relevant) Let R be a set of GDL

rules. An atom s is said to be relevant in R iff at least

one of the following three conditions is true:

– s contains the relation symbol ‘terminal’ or ‘goal’,

or

– There is a rule φ ∈ R such that either s or ¬s is

unifiable with a subgoal of φ, and the head of φ is

relevant in R, or

– s is of the form init(t) or next(t), while true(t) is

relevant in R,

– s is of the form legal(i, a), while does(i, a) is relevant

in R.

A rule φ ∈ R is said to be relevant in R iff its head is

relevant in R. An atom or rule is said to be irrelevant

in R iff it is not relevant in R.

Note that in this definition for any given atom s no

more than one of these conditions can ever be true at

the same time, so we could equivalently require that

exactly one of them be true. We will sometimes simply

say that a rule or atom is (ir)relevant without specifying

the set of rules, if the set of rules is clear from the

context.

The following definition will be useful to prove some

of the lemmas in the rest of this paper.

Definition 11 (Relevance Depth) If s is a relevant

atom, then we define the relevance depth rd(s) of s

as follows: if s contains the relation symbol ‘terminal’

or ‘goal’ then rd(s) = 0. If s is of the form next(t)

or init(t) then rd(s) = rd(true(t)). If s if of the form

legal(i, a) then rd(s) = rd(does(i, a)). Otherwise, if s or

¬s is unifiable with a subgoal of some rule with relevant

head h, then rd(s) = rd(h)+1 (if there is more than one

such rule then take the one for which rd(h) is minimal).

Lemma 2 If a rule ψ is irrelevant in R, then it is

irrelevant in any subset of R.

Proof This follows immediately from the definition. If

h is the head of ψ, and all conditions of Def. 10 are false

for h, then they are still false if any number of rules is

removed from R.

Lemma 3 If φ is relevant in R, and ψ is irrelevant in

R, then φ is also relevant in R \ {ψ}

Proof Let h be the head of φ. The proof goes by induc-

tion on relevance depth of h. If h contains the relation

symbol ‘terminal’ or ‘goal’ then the lemma is trivial, so

it holds for rd(h) = 0. Now assume the lemma holds for

all rules for which the head s has rd(s) < n, and that we

have rd(h) = n. We first prove the lemma for the case

h is not of the form init(t), next(t) or legal(i, a). Since

h is relevant in R, there must be a relevant rule φ′ ∈ R
such that h or ¬h is unifiable with one of the subgoals

of φ′. By definition of relevance depth, we know that

for the head h′ of φ′ we have rd(h′) < n, and therefore,

by the induction hypothesis, we know that h′ and φ′

are relevant in R \ {ψ}. This, however, means that h

and φ are also relevant in R \ {ψ}, by Def. 10. We can

repeat this argument for true(t) or does(i, a) instead of

h, and therefore conclude that the lemma also holds if

h is of the form init(t) or next(t) or legal(i, a).

Proposition 1 Let R be a set of rules, and let S be the

subset of R consisting of exactly all the rules that are

irrelevant in R. Then all rules φ ∈ R \ S are relevant

in R \ S.

Proof Let us write T = R\S, and S = {ψ1, ψ2, . . . ψn}.
We need to prove that all φ ∈ T are relevant in T .

Clearly, all φ ∈ T are relevant in R. Now, note that

according to Lemma 3 we have that all φ ∈ T are rel-

evant in R \ {ψ1}. Furthermore, because of Lemma 2,

we know that ψ2 is irrelevant in R \ {ψ1}. This means

that we can use Lemma 3 again, to prove that all φ ∈ T
are relevant in R \ {ψ1, ψ2}. It is now clear that if we

continue applying these two lemmas we finally obtain

that all φ ∈ T are relevant in T .



Using Game Description Language for Mediated Dispute Resolution 9

Lemma 4 Let ψ be an irrelevant rule in R. Then for

any relevant ground atom s, state w and action profile

a we have:

s is derivable from (R, V (w),a)⇔
s is derivable from (R \ {ψ}, V (w),a) (1)

Proof For this proof we define the derivation depth

dd(s) of a ground atom s as follows: dd(s) = 0 iff

s ∈ B ∪Da. Otherwise, if there is a rule φ as in Def. 8,

then we define dd(s) as dd(s∗) + 1 where s∗ is the sub-

goal of φ with the highest derivation depth. If there is

more than one such rule, then take the one that yields

the highest value of dd(s). The proof now goes by in-

duction on dd(s). Clearly, if dd(s) = 0, s is derivable

regardless of whether ψ is in R. Now suppose that the

lemma is true for any relevant ground atom s′ with

dd(s′) < n.

Left-to-right: if dd(s) = n and s is derivable from

(R, V (w),a), then there is some rule φ ∈ R that satis-

fies the conditions of Def. 8. However, this means that

the head of φ is unifiable with s, which is a relevant

atom and therefore φ is relevant. This means φ 6= ψ,

which means φ ∈ R \ {ψ}. Since for all subgoals s′

of φ we have dd(s′) < n, and all these s′ are rele-

vant because φ is relevant, we know that all positive

subgoals and none of the negative subgoals is derivable

from (R\{ψ}, V (w),a) and therefore s is derivable from

(R \ {ψ}, V (w),a).

Right-to-left: suppose that dd(s) = n and that s

is derivable from (R \ {ψ}, V (w),a). Again, let φ de-

note any rule that satisfies the conditions of Def. 8. We

know that all positive subgoals and none of the nega-

tive subgoals of φ is derivable from (R \ {ψ}, V (w),a),

and by the induction hypothesis the same holds for

(R, V (w),a). Again, using the fact that the head of φ is

unifiable with s, and therefore that φ must be relevant,

it follows that s must be derivable from (R, V (w),a).

Definition 12 (Correct Description) We say a set

of GDL rules RG is a correct description of G if there

exists a valuation function V such that for any relevant

ground atom s for which the relation symbol is a GDL

keyword, we have that

s is derivable from (RG, V (w),a) ⇒ G,V �(w,a) s

Definition 13 (Complete Description) We say a

set of GDL rules RG is a complete description of G if

there exists a valuation function V such that for any

ground atom s for which the relation symbol is a GDL

keyword other than ‘distinct’, we have that

G,V �(w,a) s ⇒ s is derivable from (RG, V (w),a)

Note that even if a description of G is correct and com-

plete, it still may contain irrelevant rules, because the

definition of ‘correct’ is limited to relevant atoms.

Proposition 2 Given a correct and complete descrip-

tion of a Mediation Game, an agent with unbounded

computational resources is able to find all solutions to

that Mediation Game.

Proof The description allows the agent to derive the ini-

tial state, for each state the set of legal actions, and for

each state and each legal action, the next state. There-

fore, the agent can systematically explore the space

of plans. Furthermore, given that the set of cycle-free

plans is finite, the agent can explore the space of cycle-

free plans exhaustively, in a finite amount of time. Again,

using the description, the agent can determine for each

cycle-free plan its terminal state, and the players’ util-

ity values for that state, and therefore it can detect

whether the plan is a solution or not.

Proposition 3 Let RG be a complete and correct de-

scription of some game G, and let S be a subset of RG
such that every rule in S is irrelevant in RG, then the

set of rules RG \ S is also a complete and correct de-

scription of G.

Proof According to Lemma 4 the question whether an

atom s is derivable or not does not change if we remove

an irrelevant rule from RG. Furthermore, because of

Lemma 2, this continues to hold if we remove all the

rules in S, one by one, from RG. Finally, the entailment

of s does not depend on the rules in RG. Therefore, if

we look at Defs. 12 and 13 we see that nothing changes

about the correctness or completeness of RG.

Definition 14 (Minimal Description) Let RG be a

complete and correct description of a game G. We say

it is minimal iff it does not contain any irrelevant rules.

Just like the notion of an ‘irrelevant’ rule, the notion

of a ‘minimal’ description does not appear in existing

literature, because in GGP there is usually no reason

to consider any non-minimal descriptions.

6 Mediation Problems

In Section 4 we have defined a Mediation Game as a

type of game, and in Section 5 we have explained how

such a game can be described as a set of GDL rules.

However, in this paper we want to tackle a problem in

which the agents do not have complete knowledge of

the game they are playing. That is, they are playing

some Mediation Game G which is completely described



10 Dave de Jonge et al.

by some set of GDL rules RG, but each agent is only

aware of a subset of those rules.

Given a mediation game G we can define a Media-

tion Problem as follows:

Definition 15 (Mediation Problem) A Mediation

Problem is a tuple 〈G,Bα, Bβ , Bµ〉 where G is a Medi-

ation Game and Bα, Bβ , and Bµ are sets of GDL rules

such that the union Bα ∪Bβ ∪Bµ forms a correct and

complete description of G.

The set Bi (with i ∈ Ag) is called the knowledge base

of agent i. These knowledge bases represent the knowl-

edge the respective agents have about the Mediation

Game they are playing. Each agent only has access to

its own knowledge base, but this knowledge base does

not necessarily form a complete description of the Medi-

ation Game, so the agents have incomplete information

about the problem they are aiming to solve. Therefore,

individual agents may not be able to find a solution to

the problem, unless they exchange knowledge.

For example, if an agent knows the current world

state wt, and it knows which actions are chosen by all

the agents, it may still not know which will be the next

state wt+1 until these actions are executed, because it

does not know all the rules that describe the update

function u.

Especially, this means that the mediator generally

will not be able to propose any plan before it has re-

quested all relevant information from the players to

gather a complete description of the Mediation Game.

We do not pose any restrictions on how the rules

that describe G are divided among the three initial

knowledge bases. Either of the three could be empty, or

could be a complete description ofG. Furthermore, they

do not need to be disjoint (but they could be). Also, it

essential to understand that the union Bα ∪ Bβ ∪ Bµ
will in general not be minimal. We consider the three

knowledge bases as static (i.e. nothing will be added or

removed from them during the execution of the media-

tion algorithm). Instead, as we will explain later, we as-

sume the mediator will collect its information received

from the players in a separate working knowledge base.

We say a Mediation Problem is trivial if both Bα
and Bβ already contain enough information that α and

β both find the solutions to the game individually.

Definition 16 (Trivial Mediation Problem) A Me-

diation Problem is said to be trivial if both Bα and Bβ
form a correct and complete description of the media-

tion game.

If a Mediation Problem is trivial then any proposal

made by the mediator could also have been found by

the players themselves, and therefore the mediator is

essentially useless. In other words, the application of

a mediation algorithm only makes sense for non-trivial

Mediation Problems.

Clearly, our problem is different from GGP, because

we are assuming the players only know part of the rules

of the game. Another important difference is that in

GGP one is interested in designing an algorithm for

one of the players, that aims to find the sequence of

actions that maximizes the utility for that player. In our

case, however, we are implementing an algorithm for the

mediator, which does not have its own utility function,

but instead is only interested in finding solutions that

are acceptable to both α and β.

Finally, let us remark that we do not expect the

agents to reason about the knowledge of other agents.

Each agent simply knows exactly those rules that are

in its own knowledge base, and has no idea about the

contents of the other agents’ knowledge bases. Our me-

diation algorithm does not attempt to reason about the

contents of the players’ knowledge bases. For this reason

we do not need to apply any form of epistemic logic.

7 The Home Improvement Domain in GDL

In this section we give a minimal description of the

home improvement domain in GDL, distributed over

three knowledge bases Bα, Bβ and Bµ.

These three knowledge bases partially overlap, and

therefore, in order that we do not have to repeat the

same rules more than once, we will divide the rules into

four sets Bs, B
′
α, B′β and B′µ, where Bs is the set of

shared knowledge:

Bs := Bα ∩Bβ ∩Bµ,

and B′i is defined as the knowledge known to agent i

apart from the shared knowledge.

B′i := Bi \Bs for all i ∈ {α, β, µ}

7.1 Shared Knowledge

The shared knowledge Bs consists of the following rules,
which are explained below:

→ role(α) (2)

→ role(β) (3)

→ role(µ) (4)

→ resource(nail) (5)

→ resource(screw) (6)

→ resource(hammer) (7)

→ resource(screwdriver) (8)

→ resource(mirror) (9)

→ resource(picture) (10)



Using Game Description Language for Mediated Dispute Resolution 11

role(?i) → input(?i, hang mirror) (11)

role(?i) → input(?i, hang picture) (12)

role(?i1) ∧ role(?i2) ∧ resource(?r) →
input(?i1, give(?r, ?i2))

(13)

role(?i) → input(?i, noop) (14)

true(have(?i1, ?r)) → legal(?i1, give(?r, ?i2)) (15)

role(?i) → legal(?i, noop) (16)

does(?i1, give(?r, ?i2)) → next(have(?i2, ?r)) (17)

does(?i1, give(?r, ?i2)) → lose(?i1, ?r) (18)

true(have(?i1, ?r)) ∧ ¬lose(?i1, ?r) → next(have(?i1, ?r))(19)

does(?i1, hang mirror) → next(mirror hanging) (20)

does(?i1, hang picture) → next(picture hanging) (21)

→ init(first round) (22)

true(first round) → next(second round) (23)

true(second round) → next(last round) (24)

true(last round) → terminal (25)

Facts 2-4 define the roles in this game. Facts 5-10 de-

fine that the constants ‘nail’, ‘screw’, ‘hammer’, ‘screw-

driver’, ‘mirror’ and ‘picture’ all represent resources

(note that ‘resource’ is not a keyword of GDL, but a

predicate that we have defined ourselves).

Rules 11-14 define the possible actions the agents

can take. Specifically, rules 11 and 12 state that any

agent can perform the action hang mirror or the ac-

tion hang picture. rule 13 states that any agent i1 can

perform the action give(r, i2) if r is a resource and i2
is an agent. We will later see that this has the inter-

pretation of giving the resource r to agent i2. Rule 14

states that an agent i can also simply do nothing (the

constant noop does not have any formal meaning, but is

commonly used as a dummy to represent non-action).

Rules 15-16 define when it is legal (or possible) to

perform these actions. Rule 15 states that it is possible

for an agent i1 to give a resource r to an agent i2 if

i1 currently owns that resource. Rule 16 says that it is

always possible for any agent i to do nothing. Note that

there are no rules here to define when hang mirror and

hang picture are possible. That is because the rules

here only represent the shared knowledge and in this

example the knowledge when you can hang a mirror or

a picture on the wall is not known to all agents.

Rules 17-21 define how the game state evolves de-

pending on the actions chosen by the agents. Rule 17

states that if an agent i1 gives a resource r to an agent

i2 then in the next state agent i2 will own that resource

and rule 18 states that in that case i1 will lose the re-

source. Rule 19 states that if an agent i1 currently owns

a resource r and it is not losing it, then in the next state

that will still own r. We note here that in GDL every

predicate is by default considered false in each round

of the game, unless for that round it is explicitly stated

that the predicate is true. Therefore, we need rule 19

to define that an agent keeps a resource unless he gives

it away.

7.2 Rules Known to α

The private knowledge base B′α of α consists of the
following rules:

→ init(have(α, hammer)) (26)

→ init(have(α, picture)) (27)

→ init(have(α, screw)) (28)

→ init(have(β, nail)) (29)

true(have(?i, hammer)) ∧ true(have(?i, nail)) ∧
true(have(?i, picture)) → legal(?i, hang picture))

(30)

true(picture hanging) → goal(α, 100)) (31)

Rules 26-29 state that agent α knows it has a hammer,

a picture, and a screw, and that it knows that β has

a nail. Furthermore, rule 30 states that if you have a

hammer, a nail and a picture then you can hang the

picture on the wall. The last rule indicates that α’s

goal is to have the picture hanging on the wall.

7.3 Rules Known to β

The private knowledge base B′β of β consists of the
following rules:

→ init(have(β, nail)) (32)

→ init(have(β,mirror)) (33)

true(have(?i, hammer)) ∧ (true(have(?i, nail)) ∧
true(have(?i,mirror)) → legal(?i, hang mirror))

(34)

true(mirror hanging) → goal(beta, 100)) (35)

Rules 32 and 33 state that agent β knows he initially

has a nail and a mirror. Rule 34 states that he knows

that with a hammer a nail and mirror you can hang the

mirror on the wall. The last rule indicates that his goal

is to have the mirror hanging on the wall.



12 Dave de Jonge et al.

7.4 Rules (Initially) Known to µ

The initial knowledge base B′µ of µ consists of the fol-
lowing rules:

→ init(have(µ, screwdriver)) (36)

true(have(?i, hammer)) ∧ true(have(?i, nail)) ∧
true(have(?i,mirror)) → legal(?i, hang mirror))

(37)

true(have(?i, screw)) ∧ true(have(?i, screwdriver)) ∧
true(have(?i,mirror)) → legal(?i, hang mirror)

(38)

This means that the mediator knows he owns a screw

driver, and that the mediator knows two ways of hang-

ing a mirror: either using a nail and a hammer, or using

a screw and a screwdriver.

7.5 Resources

In the home improvement domain, the main question

is how the agents can exchange resources, such as a

hammer, a nail or a screw, in such a way that both

players can be satisfied. GDL does not have any explicit

notion of a resource. However, as demonstrated in the

example above, we can easily model resources in GDL.

For example, we can define a constant ‘nail’ and define

the fact that α initially owns a nail as follows:

init(have(α, nail))

Furthermore we have defined a nail to be a resource, by

stating:

→ resource(nail)

Then, in combination with rules 13, 15, 17, 18, and 19,

we are sure that it behaves exactly like we expect a

resource to behave.

8 Mediation Algorithm

We will now present the algorithm that we have imple-

mented for the mediator. Throughout this section we

assume some fixed Mediation Problem 〈G,Bα, Bβ , Bµ〉
with binary utility functions. The algorithm takes the

mediator’s knowledge base Bµ as input. When the me-

diator agent is started it proceeds as follows:

1. The mediator initializes a new, empty, database Bw,

which we call its working knowledge.

2. The mediator runs its Information Gathering algo-

rithm (Sec. 8.1) to collect all relevant rules from

Bα∪Bβ∪Bµ and copies them into its working knowl-

edge Bw.

3. The mediator starts a planning algorithm to find a

solution to the problem, defined by the GDL rules

in Bw.

4. If the mediator cannot find any (new) solution, the

algorithm returns unsuccessfully.

5. If the mediator does find a solution, he proposes it

to the players.

6. If both players accept the solution, the algorithm

returns successfully.

7. If at least one of the players does not accept the

solution, the algorithm goes back to step 3 to find

a new solution.

8.1 Information Gathering

In step 2 of the algorithm above, the mediator collects

rules from the players’ knowledge bases and from its

own knowledge base, which it will then use to find so-

lutions.

One naive implementation of this Information Gath-

ering algorithm, would be that the mediator simply re-

quests all knowledge from the players’ knowledge bases

and copies it, together with all the contents of its own

knowledge base into its working knowledge. However,

in practice this would be very inefficient, because the

players and the mediator may have very large knowl-

edge bases containing lots of irrelevant information. In

a real-world setting this may occur because the agents

are not implemented to solve one specific problem, but

instead have information that is useful for a whole range

of various problems.

One could try to solve this by simply giving each

agent a separate database for each problem it has knowl-

edge about, but this is unrealistic in practice, since

many pieces of information may be related to more than

one problem. For example, the knowledge that in order

to hit a nail you need a hammer is useful for hang-

ing a picture on the wall, but is equally relevant to the

problem of building a wooden piece of furniture.

Instead, we here present an algorithm that allows

the mediator to request specific information, and that

allows the mediator to determine precisely which kind

of information to request.

We should note that an agent generally cannot de-

termine by itself whether a rule is relevant or not. Sup-

pose for example that α has the following two rules in

its knowledge base:

q ∧ s→ t p→ goal(α, 100)

while agent β has the rule

t→ p



Using Game Description Language for Mediated Dispute Resolution 13

in its knowledge base. From the point of view of α his

two rules are completely unrelated. However, in combi-

nation with the rule from agent β, we see that α’s first

rule is relevant to satisfy the subgoal of α’s second rule.

We assume a protocol that allows the mediator to

request information from each of the three knowledge

bases. When the mediator ‘requests’ a GDL atom s

from a knowledge base Bi with i ∈ {α, β, µ}, the medi-

ator will receive a response that consists of the list of

all rules from Bi for which the head is unifiable with s.

Of course, the mediator does not have direct access to

the players’ knowledge bases, but we can imagine the

mediator sending a message containing the request to

the player and then the player will execute the request

and send a message back to the mediator containing

the response.

The mediator’s Information Gathering algorithm

works as follows:

1. Initialize an empty list called the ‘request list’.

2. Request the atoms goal(?i, ?x), and terminal from

each of the three knowledge bases Bα, Bβ , and Bµ.

3. For each response received, copy its contents into

the working knowledge base Bw.

4. For every new rule in Bw extract the atoms that

appear in its body. Then for each such atom s:

– If s is of the form does(i, a), add the atom

legal(i, a) to the request list.

– Else, if s is of the form true(t), add the atoms

init(t) and next(t) to the request list.

– Else, add s itself to the request list.

5. If the request list is empty, then return.

6. Remove the first atom s from the request list.

7. Check if s has been requested before. If yes, then go

back to step 5.

8. Request the atom s from each of the three knowl-

edge bases Bα, Bβ , and Bµ.

9. Go back to step 3.

For the following lemmas and theorems we always

assume that the players respond faithfully to the medi-

ator’s queries.

Lemma 5 If an atom s is relevant in Bα∪Bβ∪Bµ, and

does not contain the relation symbols ‘does’ or ‘true’

then at some point during the execution of the algorithm

the mediator will request it.

Proof The proof now goes by induction on relevance

depth. If rd(s) = 0 then indeed s is requested at step 2

of the algorithm. Now suppose that all relevant atoms

s′ with rd(s′) < n have been requested and that we

have a relevant atom s with rd(s) = n. Let us first

prove the lemma for the case that s is not of the form

legal(i, a), init(t), or next(t). In this case, by the defi-

nition of relevance and relevance depth, there must be a

rule φ with a subgoal that is unifiable with s or ¬s, and

such that for the head h of φ we have rd(h) = n − 1.

Since the head of a rule cannot contain the relation

symbols ‘does’ or ‘true’, it follows from the induction

hypothesis that h is requested by the algorithm. This

in turn means that the mediator must at some point

receive φ in some reply message, and (unless s is of the

form true(t) or does(i, a)) s will be put on the request

list. Now suppose that s is of the form legal(i, a), and

define s′ to be does(i, a). We then know that s′ is rel-

evant, and applying the same reasoning as above to s′,

we conclude that the mediator must at some point re-

ceive a message containing a rule φ that has a subgoal

that is unifiable with s′. Upon receiving this message

the algorithm will put legal(i, a) on the request list. In

case s is of the form init(t) or next(t) the same reason-

ing applies, but with s′ being true(t).

Lemma 6 Any atom requested by the mediator is rel-

evant in Bα ∪Bβ ∪Bµ.

Proof The first atoms requested contain the relation

symbols ‘terminal’ and ‘goal’, and are therefore rele-

vant by definition. Now, suppose that at some point

during the execution of the algorithm all previously re-

quested atoms were relevant. Let s be any atom on the

request list. First consider the case that s is not of the

form legal(i, a), next(t) or init(t). Then we know that

s was in the body of some rule φ which was in the con-

tent of a reply message from a player. This means that

the head h of φ must be unifiable with a previously re-

quested atom, and therefore h is relevant. This in turn

means that s itself is also relevant. Now let us look at

the case that s is of the form legal(i, a). In that case we

know that the mediator must have received a message

containing a rule φ with does(i, a) in its body. Again,

this means that the head of φ is relevant and therefore

that does(i, a) is relevant. Then, by definition of rele-

vance, this means that legal(i, a) is also relevant. The

proof goes similarly when s is of the form next(t) or

init(t).

Lemma 7 Let S denote the set of all irrelevant rules

in Bα∪Bβ∪Bµ. Then, when the Information Gathering

algorithm has finished we have:

Bw = Bα ∪Bβ ∪Bµ \ S

Proof According to the previous lemmas, an atom s

which is not of the form true(t) or does(t) is requested

if and only if it is relevant in Bα∪Bβ∪Bµ. Furthermore,

since a rule φ is contained in a reply message iff its head

was requested, and since the head of a rule cannot be of

the form true(t) or does(t), we have that φ is contained

in a reply message iff its head is relevant in Bα∪Bβ∪Bµ,



14 Dave de Jonge et al.

which means that φ itself is relevant in Bα ∪Bβ ∪Bµ.

Finally, since Bw will consist of exactly the rules that

were contained in any reply message, the lemma follows.

We are now ready to state the main theorem of this

paper.

Theorem 1 When the Information Gathering algorithm

has finished Bw will be a complete, correct, and minimal

description of G.

Proof The set Bα ∪Bβ ∪Bµ was assumed to be a com-

plete and correct description of G. Combining Lemma

7 with Proposition 3 we conclude that Bw is complete

and correct. Furthermore, from Lemma 7 and Proposi-

tion 1 we also conclude that Bw is minimal.

8.2 Finding Solutions

Once the Information Gatheting algorithm has finished

the mediator can start searching for solutions. In order

to perform a search through the state space of the game

defined by a set of GDL rules one needs a so-called State

Machine. This is a data structure that is initialized with

a set of GDL rules R, and then for any input consisting

of a world state w, an action profile a and an atom s it

outputs ‘true’ if s is derivable from (R, V (w),a), and

‘false’ otherwise.

The standard GGP code base comes with two dif-

ferent implementations of a State Machine: one based

on a first-order backward chaining algorithm, called the

AIMA prover, and one based on a forward chaining al-

gorithm for propositional logic, called a PropNet. The

PropNet is usually much faster than the AIMA prover,

but has the disadvantage that it requires a grounding

step that replaces all rules containing variables with

grounded rules, and therefore takes more time to ini-

tialize.

In order to provide evidence that our mediation al-

gorithm works correctly we have implemented a simple

brute-force exhaustive tree search algorithm to find so-

lutions, based on the AIMA prover. We first apply the

above described knowledge gathering algorithm to col-

lect the relevant rules in the mediator’s working knowl-

edge Bw and then use the rules in Bw to initialize the

AIMA prover. We then use this to generate a search

tree. Each node νw in the tree represents a state w and

each arc between a node νw and its child node νw′ rep-

resents an action profile a that is legal in ν′ and for

which u(w,a) = w′. The tree is generated by a depth-

first search, until a node ν∗ is generated corresponding

to some terminal state w∗ that yields a utility value of

100 for both players.

We have tested this algorithm on the Home Improve-

ment domain, and indeed it managed to find the correct

solution.

Of course, in domains that are more complicated

than the Home Improvement domain this approach may

not work because the domain could be too large for

exhaustive search. There are many other search tech-

niques that can be used in such cases, such as heuristic

search and Monte Carlo Tree Search (MCTS). How-

ever, the goal of this paper is to present a smart knowl-

edge gathering algorithm that is able to collect all rele-

vant information, rather than to present the best plan-

ning/GGP algorithm to find solutions using that infor-

mation.

9 Experiments

In order to test our algorithm we have conducted a

number of experiments. The idea is that we compare

our ‘smart’ mediator algorithm with a ‘naive’ mediator.

The smart mediator uses the Information Gathering al-

gorithm described in Section 8.1. The naive mediator,

on the other hand, simply requests the entire knowledge

base of each agent and does not distinguish between rel-

evant and irrelevant rules. In other words, it uses the

entire set of rules Bα ∪ Bβ ∪ Bµ to initialize its State

Machine.

9.1 Setup

We have used three quantities to measure the efficiency

of both implementations. Firstly, we measure how much

time it takes them to collect the rules into the working

knowledge Bw. Secondly, we have measured how much

time it takes to initialize the AIMA Prover and the

PropNet. Note that here we are not actually using the

AIMA Prover or the PropNet. We are only initializing

them so that we can measure how much time that takes.

The games we have used for our experiments are

Tic-Tac-Toe, Breakthrough, Connect-4, Free-For-All,

and Qyshinsu. The descriptions of the games were down-

loaded from the GDL repositories at http://games.

ggp.org/. Note that these games are ordinary games,

rather than Mediation Games. This is not important,

however, because we are only testing the mediator’s In-

formation Gathering algorithm, and not its ability to

find a plan that satisfies the players’ goals.

In each experiment we have taken the GDL descrip-

tion of one game and randomly distributed its rules

among the three knowledge bases. For the largest of

the tested games, Qyshinsu, the description contains

223 relevant rules. We then augmented each of these

http://games.ggp.org/
http://games.ggp.org/


Using Game Description Language for Mediated Dispute Resolution 15

knowledge bases with up to 200,000 randomly gener-

ated irrelevant rules.

All algorithms were implemented in Java, and all ex-

periments were performed on a HP Z1 G2 workstation

with Intel Xeon E3 4x3.3GHz CPU and 8 GB RAM.

9.2 Results

As explained, we have used five games for our experi-

ments. However, since the results for all these games are

virtually identical we here only discuss the experiments

with Tic-Tac-Toe. The results are displayed in Tables

1, 2, and 3. For the the results obtained with the other

games we refer to the Appendix.

In each of the tables the first row displays the num-

ber of irrelevant rules added to each knowledge base.

The second and third row respectively show the mea-

sured times for the smart and naive mediator. The re-

sults are averaged over 500 repetitions of the experi-

ments.

From Tables 2 and 3 we see that the time the smart

mediator needs to initialize the AIMA Prover and Prop-

Net are independent of the number of irrelevant rules,

whereas for the naive algorithm these times clearly in-

crease. This makes sense, because the smart mediator

only uses the relevant rules to initialize the State Ma-

chines.

From Table 1 we see that the smart mediator is also

faster when it comes to gathering the rules, which is

perhaps less obvious. After all, the naive mediator only

needs to send one request to both players and then im-

mediately receives all rules, whereas the smart mediator

needs to go through several iterations to determine the

relevant rules, and for each request from the mediator

the agents need to search again for the right rules within

their respective knowledge bases. However, searching

for a rule with a given head can be done in constant

time (if the rules are stored in a hash table), so the

large size of the databases is not very important. Fur-

thermore, the smart mediator has the advantage that it

only needs to copy a small number of rules to its work-

ing knowledge, which is independent of the number of

irrelevant rules, whereas the naive algorithm must copy

the complete knowledge bases to its working knowledge,

which is linear in the number of irrelevant rules. Indeed,

we see that the results of the smart algorithm remain

constant while the results of the naive algorithm are

(roughly) linearly increasing.

irr. rules/agent: 0 40,000 80,000 120,000 160,00 200,000
smart: 1 1 2 1 0 1
naive: 0 108 209 310 534 718

Table 1 Time required to collect the rules from the players,
in milliseconds.

irr. rules/agent: 0 40,000 80,000 120,000 160,00 200,000
smart: 0 0 0 0 0 0
naive: 0 337 698 943 1,369 2,555

Table 2 Time required to initialize the AIMA Prover, in
milliseconds.

irr. rules/agent: 0 40,000 80,000 120,000 160,00 200,000
smart: 4 9 20 11 6 15
naive: 17 5,722 12,123 17,949 25,272 31,720

Table 3 Time required to initialize the PropNet, in millisec-
onds.

10 Conclusions

In this paper we have presented the notion of a Medi-

ation Problem as a multi-agent problem in which each

agent has a large data base containing knowledge, but

only a small part of that knowledge is relevant to the

problem at hand, and the knowledge of each agent is

incomplete. Furthermore, there is a third agent, known

as the mediator, which is neutral and helps the players

to find a plan that is acceptable to both of them.

The mediator faces two major challenges. The first

challenge is to collect all knowledge from the players

and from its own database that is relevant to the prob-

lem they are aiming to solve. The second challenge is to

use that knowledge in order to find a plan that solves

the problem. We have focused on the first of these two

challenges, as the second challenge can be solved using

existing planning algorithms or GGP algorithms.

We have provided a simple example of a Media-

tion Problem, and we have implemented an informa-

tion gathering algorithm that allows the mediator to

request exactly those rules from the agents’ knowledge

bases that are relevant to the problem.

We have given a formal proof that our algorithm

outputs a complete, correct, and minimal description of

the Mediation Game, and we have showed with several

experiments that this algorithm is much more efficient

than the naive solution in which the mediator simply

uses all available knowledge, including irrelevant rules.

Furthermore, we have argued that GDL is a natu-

ral choice for the description of Mediation Problems,

because it allows us to define games, and allows us to

distribute the description of the game among the agents

such that each only has partial knowledge.



16 Dave de Jonge et al.

11 Future Work

Currently, our mediation algorithm assumes that the

agents are willing to provide all their relevant infor-

mation to the mediator. It would be interesting to in-

vestigate what happens if players could withhold infor-

mation for strategic reasons. For this we first need to

investigate to what extend it is possible to construct

plans if the rules known to the mediator do not form a

complete description of the game.

Another interesting way to increase the complexity

of the domain would be to allow for conflicting infor-

mation. The mediator may at some point believe some

predicate φ to be true, but then may need to revise this

belief if one of the agents provides new information that

is inconsistent with φ. The players may then use argu-

ments to convince the mediator to discard certain in-

formation to re-establish consistency of its knowledge.

Introducing this possibility would lead us into the realm

of Argumentation Based Negotiation (ABN).

We would also like to investigate whether our ap-

proach can be applied when mediation involves lan-

guages other than GDL, such as CANPlan (Sardina

and Padgham, 2011).

Finally, we plan to investigate to what extent we

could make use of GDL-II to define Mediation Games

in which players have imperfect information about the

state of the game and in which actions may have inde-

terministic outcomes.

Acknowledgments

This work was sponsored by Endeavour Research Fel-

lowship 4577 2015 awarded by the Australian Depart-

ment of Education.

Appendix A

In this section we present the results obtained with a

number of other games. All results in this section were

averaged over 100 repetitions.

Experimental Results Connect-4

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 0 1 0 0 1 0
naive: 0 44 99 132 189 262

Table 4 Time required to collect the rules from the players,
in milliseconds.

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 0 0 0 0 0 0
naive: 0 143 309 415 573 733

Table 5 Time required to initialize the AIMA Prover, in mil-
liseconds.

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 32 36 27 31 35 34
naive: 31 2,848 5,804 8,685 11,873 14,712

Table 6 Time required to initialize the PropNet, in millisec-
onds.

Experimental Results Breakthrough

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 0 1 1 1 1 1
naive: 0 48 97 145 188 249

Table 7 Time required to collect the rules from the players,
in milliseconds.

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 0 0 0 0 0 0
naive: 0 143 290 415 659 853

Table 8 Time required to initialize the AIMA Prover, in mil-
liseconds.

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 2,252 2,225 2,244 2,134 2,302 2,333
naive: 2,076 4,332 6,954 9,352 12,029 14,393

Table 9 Time required to initialize the PropNet, in millisec-
onds.

Experimental Results Free-For-All

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 0 1 0 0 2 0
naive: 0 43 92 128 193 250

Table 10 Time required to collect the rules from the players,
in milliseconds.

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 0 0 0 0 0 0
naive: 0 140 281 467 589 846

Table 11 Time required to initialize the AIMA Prover, in
milliseconds.

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 140 137 143 126 144 159
naive: 142 3,127 6,392 9,367 12,007 14,822

Table 12 Time required to initialize the PropNet, in millisec-
onds.



Using Game Description Language for Mediated Dispute Resolution 17

Experimental Results Qyshinsu

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 5 1 2 3 2 3
naive: 0 42 107 125 193 221

Table 13 Time required to collect the rules from the players,
in milliseconds.

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 0 0 1 0 0 0
naive: 0 142 299 405 545 905

Table 14 Time required to initialize the AIMA Prover, in
milliseconds.

irr. rules/agent: 0 20,000 40,000 60,000 80,00 100,000
smart: 168 244 162 204 226 233
naive: 138 3,426 6,981 10,511 14,374 17,876

Table 15 Time required to initialize the PropNet, in millisec-
onds.

References

Baydin AG, López de Mántaras R, Simoff S,

Sierra C (2011) CBR with commonsense reason-

ing and structure mapping: An application to me-

diation. In: Ram A, Wiratunga N (eds) Case-

Based Reasoning Research and Development: 19th

International Conference on Case-Based Reason-

ing, ICCBR 2011, London, UK, September 12-

15, 2011. Proceedings, Springer Berlin Heidel-

berg, Berlin, Heidelberg, pp 378–392, DOI 10.

1007/978-3-642-23291-6 28, URL http://dx.doi.

org/10.1007/978-3-642-23291-6_28

Bellucci E, Zeleznikow J (2005) Developing negotia-

tion decision support systems that support media-

tors: case study of the Family Winner system. Arti-

ficial Intelligence and Law 13(2):233–271

Bench-Capon TJM (2003) Persuasion in practical argu-

ment using value-based argumentation frameworks.

Journal of Logic and Computation 13(3):429–448

Ceri S, Gottlob G, Tanca L (1989) What you al-

ways wanted to know about datalog (and never

dared to ask). IEEE Transactions on Knowledge

and Data Engineering 1(1):146–166, DOI http://doi.

ieeecomputersociety.org/10.1109/69.43410

Chalamish M, Kraus S (2012) AutoMed: an automated

mediator for multi-issue bilateral negotiations. Au-

tonomous Agents and Multi-Agent Systems 24:536–

564, DOI 10.1007/s10458-010-9165-y

Debenham J (2004) Bargaining with information. In:

Jennings NR, Sierra C, Sonenberg L, Tambe M (eds)

Proceedings Third International Conference on Au-

tonomous Agents and Multi Agent Systems AAMAS-

2004, ACM Press, New York, pp 664–671

Debenham JK, Simoff S (2006) Negotiating intelli-

gently. In: Bramer M, Coenen F, Tuson A (eds) Pro-

ceedings 26th International Conference on Innova-

tive Techniques and Applications of Artificial Intelli-

gence, Cambridge, UK, pp 159–172

Genesereth M, Love N, Pell B (2005) General game

playing: Overview of the aaai competition. AI Mag-

azine 26(2):62–72

Genesereth MR, Thielscher M (2014) General Game

Playing. Synthesis Lectures on Artificial Intelligence

and Machine Learning, Morgan & Claypool Publish-

ers, DOI 10.2200/S00564ED1V01Y201311AIM024

Jonge Dd, Zhang D (2016) Using gdl to represent do-

main knowledge for automated negotiations. In: Os-

man N, Sierra C (eds) Autonomous Agents and Mul-

tiagent Systems: AAMAS 2016 Workshops, Vision-

ary Papers, Singapore, Singapore, May 9-10, 2016,

Revised Selected Papers, Springer International Pub-

lishing, Cham, pp 134–153

Knuth DE, Moore RW (1975) An analysis of alpha-

beta pruning. Artificial Intelligence 6(4):293 –

326, DOI http://dx.doi.org/10.1016/0004-3702(75)

90019-3, URL http://www.sciencedirect.com/

science/article/pii/0004370275900193

Kocsis L, Szepesvári C (2006) Bandit based monte-

carlo planning. In: Proceedings of the 17th European

Conference on Machine Learning, Springer-Verlag,

Berlin, Heidelberg, ECML’06, pp 282–293, DOI

10.1007/11871842 29

Kolodner JL, Simpson RL (1989) The mediator: Anal-

ysis of an early case-based problem solver. Cognitive

Science 13(4):507–549

Lin R, Gev Y, Kraus S (2011) Bridging the gap: Face-

to-face negotiations with automated mediator. IEEE

Intelligent Systems 26(6):40–47

Love N, Genesereth M, Hinrichs T (2006) General game

playing: Game description language specification.

Tech. Rep. LG-2006-01, Stanford University, Stan-

ford, CA, http://logic.stanford.edu/reports/LG-

2006-01.pdf

von Neumann J (1959) On the theory of games of strat-

egy. In: Tucker A, Luce R (eds) Contributions to the

Theory of Games, Princeton University Press, pp 13–

42

Parsons S, Sierra C, Jennings N (1998) Agents that

reason and negotiate by arguing. Journal of Logic

and computation 8(3):261–292

Rahwan I, Pasquier P, Sonenberg L, Dignum F (2009)

A formal analysis of interest-based negotiation. An-

nals of Mathematics and Artificial Intelligence 55(3-

4):253–276

http://dx.doi.org/10.1007/978-3-642-23291-6_28
http://dx.doi.org/10.1007/978-3-642-23291-6_28
http://www.sciencedirect.com/science/article/pii/0004370275900193
http://www.sciencedirect.com/science/article/pii/0004370275900193


18 Dave de Jonge et al.

Sardina S, Padgham L (2011) A bdi agent pro-

gramming language with failure handling, declara-

tive goals, and planning. Autonomous Agents and

Multi-Agent Systems 23(1):18–70, DOI 10.1007/

s10458-010-9130-9, URL http://dx.doi.org/10.

1007/s10458-010-9130-9

Schei V, Rognes JK (2003) Knowing me, knowing you:

Own orientation and information about the oppo-

nent’s orientation in negotiation. International Jour-

nal of Conflict Management 14(1):43–60

Sierra C, Debenham J (2007) Information-based

agency. In: Proceedings of Twentieth International

Joint Conference on Artificial Intelligence IJCAI-07,

Hyderabad, India, pp 1513—1518

Simoff SJ, Debenham J (2002) Curious negotiator. In:

Klusch M, Ossowski S, Shehory O (eds) Proceedings

of the Int. Conference on Cooperative Information

Agents, CIA-2002, Springer, Heidelberg

Sycara KP (1991) Problem restructuring in negotiation.

Management Science 37(10):1248–1268

Thielscher M (2010) A general game description lan-

guage for incomplete information games. In: Fox

M, Poole D (eds) Proceedings of the Twenty-

Fourth AAAI Conference on Artificial Intelligence,

AAAI 2010, Atlanta, Georgia, USA, July 11-15,

2010, AAAI Press, URL http://www.aaai.org/

ocs/index.php/AAAI/AAAI10/paper/view/1727

Visser W, Hindriks KV, Jonker CM (2011) Interest-

based preference reasoning. In: Proceedings of Inter-

national Conference on Agents and Artificial Intelli-

gence ICAART2011, pp 79–88

Wilkenfeld J, Kraus S, Santmire TE, Frain CK (2004)

The role of mediation in conflict management: Con-

ditions for successful resolution. In: et al ZM (ed)

Multiple Paths to Knowledge in International Rela-

tions, Lexington Books

http://dx.doi.org/10.1007/s10458-010-9130-9
http://dx.doi.org/10.1007/s10458-010-9130-9
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1727
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1727

	Introduction and Motivation
	Previous Work
	The Home Improvement Problem
	Mediation Games
	Game Description Language
	Mediation Problems
	The Home Improvement Domain in GDL
	Mediation Algorithm
	Experiments
	Conclusions
	Future Work

